Главная / Вокруг нас / Интересный космос ч.90

Интересный космос ч.90

1. В далекой галактике обнаружен новый тип звездного взрыва

Используя телескопы на Ла-Пальме и на Гавайях, команда астрономов из Великобритании обнаружила взрыв PS1-10adi, который был настолько энергичным, что должен был возникнуть из одного из двух источников: чрезвычайно массивной звезды – в несколько сотен раз больше Солнца – взорвавшейся как сверхновая или из меньшей по массе звезды, разрушенной гравитацией сверхмассивной черной дыры.

«Наше открытие выявило взрывы, способные высвободить в десять раз больше энергии, чем стандартные сверхновые. Данные показывают, что подобные события не так уж необычны и бросают вызов знаниям о разрушении звезд. В то же время их существование дает важную информацию об экстремальной окружающей среде центральных, скрытых областей галактик», – рассказывает Козимо Инсерра, соавтор исследования из Университета Саутгемптона (Великобритания).

Взрыв, подробно описанный в исследовании, опубликованном в Nature Astronomy, произошел 2,4 миллиарда лет назад и был захвачен телескопами в 2010 году. Медленная эволюция позволила ученым отслеживать его в течение нескольких лет.

Козимо Инсерра был вовлечен в анализ данных и помог определить два сценария, которые могли бы объяснить событие. Он также проверил данные с использованием принятых физических моделей сверхновой для подкрепления результатов.

«Если этот взрыв является следствием разрушения звезды, близко подошедшей к горизонту событий сверхмассивной черной дыры, то его свойства определяют совершенно новый тип приливных разрушений. С другой стороны, если PS1-10adi вспышка сверхновой, то ее свойства более экстремальны, чем мы предполагали, и, вероятно, это связано с центральной средой галактики-хозяйки», – заключил Эркки Канкаре, ведущий автор исследования из Королевского университета в Белфасте (Великобритания).

2. Тяжелый металл из метеоритов оказался способен убивать раковые клетки

Иридий — второй по плотности металл в мире — может убивать раковые клетки, наполняя их смертельной версией кислорода, оставляя здоровые ткани неповрежденными. Обнаруженный впервые в 1803 году, металл получил свое название от латинского «радуга». Тяжелый, хрупкий и желтый металл происходит из той же семьи, что и платина, и является самым стойким к коррозии металлом в мире.

Иридий редко встречается на Земле, но изобилует в метеороитах. В земной коре было обнаружено большое количество иридия возрастом 66 миллионов лет, что привело к теории, что он появился на планете вместе с астероидом, который привел к исчезновению динозавров.

Ученые создали соединение иридия и органического материала, которое они нацеливают прямо на раковые клетки. Соединение передает энергию в клетки, превращая кислород внутри них в синглетный кислород, который ядовит и убивает клетку, оставляя невредимыми здоровые ткани.

«Этот проект является скачком вперед в понимании того, как эти новые противораковые соединения на основе иридия атакуют раковые клетки, он представляет различные механизмы действия, позволяющие обойти проблему резистентности и бороться с раком под другим углом», говорит соавтор исследования Куксон Чиу, аспирант кафедры химии в Университете Уорика.

Освещение лазером кожи на раковой области запускает процесс — он достигает светоактивного покрытия на соединении и активирует металл, который начинает заполнять раковые клетки синглетным кислородом.

Фотохимиотерапия — использование лазерного света для лечения рака — стремительно развивается как жизнеспособное, эффективное и неинвазивное лечение. Пациенты становятся все более устойчивыми к традиционным методам лечения, поэтому очень важно установить новые пути вроде этого для борьбы с болезнью.

Ученые обнаружили, что после атаки красным лазерным светом (который может проникать глубоко под кожу) на смоделированную опухоль легких, которую вырастили в лаборатории, активированный органико-иридиевый компонент проникал во все слои опухоли, убивая ее. Это продемонстрировало, насколько эффективным и далеко идущим было лечение.

Ученые также доказали, что этот метод безопасен для здоровых клеток, проведя лечение нераковой ткани и обнаружив, что она осталась невредимой.

«Наш инновационный подход к борьбе с раком, включающий нацеливание на важные клеточные белки, может привести к появлению новых лекарств с новыми механизмами действия. Это крайне необходимо», говорит Пинью Чжан, сотрудник химического факультета Университета Уорика.

Ученые использовали методы передовой масс-спектрометрии, чтобы получить беспрецедентный вид отдельных белков внутри раковых клеток — и это позволило им точно определить, какие белки были атакованы органико-иридиевым соединением.

Проанализировав большие объемы данных — тысячи белков из моделируемых раковых клеток — они пришли к выводу, что иридиевое соединение повредило ключевые молекулы рака в белках.

«Драгоценный металл платина уже используется в более 50% раковых химиотерапий. В настоящее время изучается потенциал других драгоценных металлов вроде иридия к созданию новых целевых препаратов, которые будут атаковать раковые клетки иначе и с минимальными побочными эффектами», говорит Питер Сэдлер, лаборатория которого находится на кафедре химии в Университете Уорика. «Самое время найти медицинское применение иридию, который был доставлен к нам с астероидом 66 миллионов лет назад».

3. На карликовой планете Церера в прошлом мог существовать океан

В марте 2015 года миссия НАСА Dawn прибыла к Церере, протопланете и крупнейшему объекту пояса астероидов. Миссия Dawn изучает старейшие объекты Солнечной системы, чтобы составить представление об условиях и процессах, происходивших на ранних этапах её существования. Dawn уже определила, что на Церере распространены водоносные минералы, что говорит о том, что на протопланете раньше был глобальный океан.

Это, конечно, вызвало много вопросов: что случилось с океаном, и не могло ли на Церере до сих пор сохраниться воды В связи с этим команда Dawn недавно провела два исследования, проливших свет на эти вопросы. В первом полученные по гравитации данные использовались для описания внутренностей протопланеты. Во втором изучалась топография небесного тела с целью определения её структуры.

Первое исследование, «Ограничения на внутреннее строение Цереры и эволюцию исходя из её формы и гравитации, измеренных космическим аппаратом Dawn», недавно было опубликовано в журнале Journal of Geophysical Research. Команда, ведомая постдоком из JPL Антоном Ермаковым, включала в себя исследователей из Годдардского центра космических полётов, Немецкого аэрокосмического центра, Колумбийского университета, Калифорнийского университета в Лос-Анджелесе и Массачусетского технологического института.

Команда работала с данными по гравитации протопланеты, собранными зондом Dawn после выхода на орбиту вокруг Цереры. Используя сеть дальней космической связи НАСА для отслеживания небольших изменений орбиты космического корабля, Ермаков с коллегами смогли провести измерения формы и гравитации на Цереры, чтобы определить её состав и строение.

Они обнаружили признаки наличия геологической активности на Церере; если и не в текущий момент, то в относительно недавнем прошлом. Это видно по трём кратерам – Оккатор, Керван и Ялод – и по единственной высокой горе Цереры, Ахуна Монс. Их связывают с «гравитационными аномалиями», расхождениями между моделями гравитации Цереры и тем, что зонд Dawn наблюдает в реальности.

Команда заключила, что эти четыре особенности и другие заметные геологические образования служат признаками криовулканизма подповерхностных структур. Более того, они определили относительно низкую плотность коры, стоящую ближе ко льду, чем к твёрдым скалам. Но это не совпало с предыдущим исследованием, выполненным Майклом Блэндом из Геологической службы США.

В исследовании Блэнда, опубликованном в журнале Nature Geoscience в 2016 году, отмечалось, что лёд вряд ли будет основным компонентом плотной коры Цереры, поскольку он для этого слишком мягок. Естественно, возникает вопрос, каким образом кора может быть лёгкой, как лёд, совпадая с ним по плотности, и при этом гораздо более прочной. Для ответа на этот вопрос вторая команда попыталась смоделировать эволюцию поверхности Цереры.

Их исследование, «Внутреннее строение Цереры, открытое при помощи поверхностной топографии и гравитации», было опубликовано в журнале Earth and Planetary Science Letters. Команда под управлением Роджера Фу, адъюнкт-профессора из Департамента Земли, атмосферных и планетарных наук в MIT, состояла из работников Виргинского технологического института, Калифорнийского технологического института, Юго-западного исследовательского института, Геологического общества США и Национального института астрофизики Италии.

Они изучали прочность и состав коры Цереры и внутреннее строение, основываясь на её топографии. Моделируя потоки коры протопланеты, Фу с коллегами определили, что она, скорее всего, состоит из смеси льда, солей, камней и клатратных гидратов. Такие структуры, состоящие из молекулы газа, окружённой молекулами воды, получаются в 100-1000 прочнее водяного льда.

По их теории такая высокопрочная структура может покоиться на более мягком слое, содержащем определённое количество жидкости. Это позволяет топографии Цереры меняться со временем и сглаживать особенности, которые когда-то выделялись сильнее. Также этот вариант отвечает на вопрос о возможном океане – он замёрз и его сковала жёсткая кора. Тем не менее, часть его вод до сих пор должна находиться в жидком состоянии под поверхностью.

Эта теория совпадает с несколькими моделями термической эволюции, опубликованными до того, как Dawn прибыла к Церере. Модели утверждают, что внутри Цереры находится жидкая вода, что похоже на находки, сделанные на луне Юпитера, Европе, и на луне Сатурна, Энцеладе. Но в случае Цереры эта жидкость может быть остатками древнего океана, а не результатом текущей геологической активности внутренностей небесного тела.

Все вместе эти исследования показывают, что у Цереры была долгая и бурная история. В первом исследовании было обнаружено, что кора Цереры представляет собой смесь льда, солей и водоносных материалов – представляющих большую часть древнего океана. Второе исследование говорит о том, что под жёсткой поверхностной корой Цереры скрывается более мягкий слой, что может быть признаком жидкости, оставшейся от океана.

Как объяснила Джули Кастильо-Роджез, участник проекта Dawn в JPL и соавтор в обоих исследованиях: «Мы всё больше узнаём о том, что Церера – сложный, динамичный мир, у которого было много воды в жидкой фазе в прошлом, и может сохраняться какое-то её количество в настоящем».

19 октября 2017 года НАСА объявила, что миссия Dawn продляется, пока у аппарата не закончится топливо – это произойдёт где-то во второй половине 2018-го. Продление означает, что Dawn будет находиться на орбите вокруг Цереры, когда та пройдёт через перигелий в апреле 2018-го. В это время поверхностный лёд начнёт испаряться и формировать временную атмосферу.

В этот период и далее аппарат будет оставаться на стабильной орбите вокруг Цереры, и продолжит отправлять информацию об этой протопланете. Полученные данные помогут улучшить наше понимание ранних этапов развития Солнечной системы и процесса её эволюции в течение миллиардов лет.

В будущем, возможно, мы отправим к Церере аппарат, который сможет спуститься на её поверхность и исследовать её топографию напрямую. Если всё получится, в будущем миссии смогут исследовать и внутренности Цереры, а также других «океанских» миров вроде Европы и Энцелада, и выяснить, что скрывается под их ледяной поверхностью!

Читать еще:

Гладиаторские морские сражения – навмахии

Особо изысканным зрелищным «блюдом» для римской толпы были морские сражения гладиаторов, навмахии. Их организация стоила …

Добавить комментарий