Главная / Вокруг нас / Самоорганизация — творчество природы

Самоорганизация — творчество природы

Древние истины: «время вспять не воротишь», «нельзя дважды войти в одну реку»… Доктор Фауст со своей мечтой об утраченной юности… Время нам кажется рекой, чье мощное течение неумолимо уносит вдаль все, что попадает в ее воды, но в своих водоворотах рождает все новые и новые формы мира. Появившаяся в последней четверти ХХ века теория нелинейных динамических систем позволяет по-новому взглянуть на вечные вопросы о предопределенности и случайности, найти механизмы творчества природы.

«Стрела времени»: от порядка к беспорядку

Всем нам знакомы ситуации, когда порядок, с любовью наведенный в нашей квартире, несколько дней спустя сменяется хаосом, а замок из песка, выстроенный на берегу моря, через несколько минут превращается в бесформенный холмик, от которого на следующий день не остается и следа. Сложные механизмы рано или поздно ломаются и требуют ремонта. За этими явлениями наука разглядела общий принцип, строгая формулировка которого носит название второго начала термодинамики. Его смысл упрощенно можно пояснить так: в системе, предоставленной самой себе, все меняется от порядка к беспорядку.

Этот закон, открытый в XIX веке, несмотря на столь очевидные примеры своего действия, вызвал целую бурю в науке. Дело в том, что ни известная в те времена механика Ньютона и Галилея, ни электродинамика Максвелла не отличают прошлого от будущего: теоретически движение тел по траекториям возможно как в одну сторону, для этого надо лишь поменять направление скорости на противоположное. При этом движение происходит так, как будто бы время поменяло свой бег на обратный. То же можно сказать и об электромагнитных волнах. Второе начало термодинамики утверждает, что все изменения в мире подчинены определенной тенденции; иными словами, время течет только в одну сторону, и повернуть его вспять невозможно, ибо тогда будет нарушено непреложное правило, столь же незыблемое, как закон сохранения массы или энергии.

Прошлое и будущее — субъективны

Вплоть до первой половины XIX века обратимость времени считалась колоссальным достижением разума, идеальным выражением объективности науки. Вот они, истинные законы природы: в них все симметрично, а кажущаяся необратимость — всего лишь следствие субъективности нашего восприятия действительности!

Однако трудности такой концепции непреодолимы. Разбитая ваза не собирается в целую, люди сначала рождаются, живут и потом умирают, и никогда не бывает наоборот, — хотя и ваза, и человек состоят из мельчайших частичек, подчиняющихся законам механики, электродинамики и другим, для которых прошлое и будущее симметричны. Откуда же тогда возникает выделенность течения времени, и где берут начало те явления и объекты нашего мира, которых не было в прошлом И можно ли вообще адресовать такие вопросы науке, которая идет путем разума и опыта Ведь с древних времен для объяснения причин и целей существования обращаются к вере, а не к разуму.

Механизмы необратимости времени

Современная нелинейная динамика объясняет механизмы, приводящие к необратимости времени, двумя фундаментальными свойствами, присущими сложным системам. Первое из них состоит в том, что любая сложная система проходит в своем развитии этапы неустойчивости — своего рода кризисы, сопровождающиеся неоднозначностью выбора дальнейшего пути. Второе — в том, что любое сложное движение содержит как составную часть случайную, непредсказуемую «дрожь», так называемые флуктуации.
Законы классической механики просты и обратимы только для относительно простых систем, например, для одной планеты, вращающейся вокруг Солнца. Однако движение под действием сил тяготения уже трех тел чрезвычайно сложно и характеризуется как хаотическое. Воспроизвести его можно только теоретически, даже если абсолютно точно задать начальное расположение и скорость, так как самые малые изменения положения тел приводят к тому, что траектория их движения очень сильно изменяется.

Идея наложения на детерминированное поведение системы случайного, непредсказуемого воздействия имеет богатую историю. Еще в античности Лукреций использовал флуктуации для описания падения атомов в пустоте. К таким же по сути идеям пришел и Эйнштейн для объяснения спонтанного испускания света возбужденным атомом. Случайность лежит и в основе интерпретации построений квантовой механики.

Невозможность обращения времени, например, в механической системе теперь может объясняться следующим образом. Заменив в какой-то момент времени скорость всех частиц на противоположную, мы тем не менее не добьемся точного их движения в обратном направлении — как бы из будущего в прошлое — по прежним траекториям, так как благодаря флуктуациям мы никогда не достигнем абсолютно точного задания нужной начальной конфигурации. Неустойчивость же приведет к тому, что траектории движения частиц не будут даже отдаленно похожи на ожидаемые.

В хаосе рождается новое.

Если бы все в мире менялось только от порядка к беспорядку, разрушая и сглаживая все формы и структуры, то довольно скоро любые проявления жизни во Вселенной прекратили бы свое существование — все вещество равномерно заполнило бы космическое пространство, выровнялась бы его температура и наступила «тепловая смерть». Но, к счастью, все имеет свою противоположность, и тенденцию, предписываемую вторым началом термодинамики, уравновешивает другая, упорядочивающая. Под ее действием однородная, полностью беспорядочная картина сменяется упорядоченной, структурированной. Из хаотического теплового движения молекул вдруг возникают турбулентные вихри, а из лишенных структуры скоплений межзвездного вещества, достаточно простого по своему составу, рождаются звезды, производящие в своих недрах сложные химические элементы; возникает жизнь; появляются новые виды растений и животных. В последние десятилетия эти явления объединились под общим названием «самоорганизация».

Изолированным, замкнутым системам свойственно стремление к однородности, выравненности, одинаковости, в то время как противоположная, упорядочивающая тенденция — это свойство систем, активно обменивающихся со своим окружением энергией, массой и т. п. В таких системах структуры возникают за счет динамического равновесия между потоками извне и обусловленным вторым началом термодинамики рассеянием внутри системы.

Самоорганизация и эволюция

Концепция самоорганизации тесно связана с теорией эволюции. В системе, непрерывно снабжаемой энергией, некоторые конфигурации способны воспринимать и использовать поступающую энергию лучше, чем другие. Вследствие рассеяния и потерь энергии последние постепенно исчезают, в то время как первые могут компенсировать свои потери и даже расти, так как они как бы настроены на одну волну с законами эволюции, находятся в резонансе с вибрациями природы и своей структурой улавливают главное направление развития.

Такие умозаключения повторяют ход рассуждений Дарвина и свидетельствуют о том, что принцип выживания приспособленных применим не только к биологической эволюции.

Самоорганизация в активных средах

Самоорганизация возникает в системах сама по себе, она не управляется никакими импульсами извне, а появляется как следствие внутреннего устройства системы. Рассмотрим, например, цепочку, составленную из последовательно соединенных элементов, имеющих два состояния равновесия, и будем считать, что на них может влиять лишь соседний элемент, причем тогда и только тогда, когда соседние элементы находятся в разных состояниях. Пусть исходное состояние всех элементов — одно и то же и при возбуждении крайнего элемента он переходит из исходного метастабильного состояния в другое, абсолютно стабильное, и принуждает к этому своего соседа. В результате по цепочке распространяется волна переключения, существующая без какого-либо управляющего вмешательства. Небольшим усложнением элемента среды можно добиться того, что в цепочке будут распространяться уединенный импульс (так называемый солитон — одногорбая волна), либо стоячие или бегущие волны.

Эти механизмы в природе лежат в основе распространения степных пожаров, эпидемий, волн концентрации веществ в реакциях химической кинетики (реакции Белоусова — Жаботинского), а также волн ингибиторов и активаторов, регулирующих процессы роста живых организмов, и т. п.

Возникновение жизни

Одним из самых ярких примеров самоорганизации является возникновение жизни на нашей планете. Каков механизм этого явления Ссылка на Дарвина и его теорию слегка проясняет дело, однако остается вопрос о первоначальном толчке, повлекшем за собой эту цепочку отборов. Дело в том, что вероятность случайного образования простейших живых организмов и их эволюции крайне мала: по оценкам, она составляет величину порядка 10^{-60} и менее. Еще меньше вероятность случайного образования механизма катализа, работающего на современном этапе биологической эволюции. Оно оценивается невообразимо малой величиной: 10^{-7000}(!). Для сравнения заметим, что все вещество Вселенной эквивалентно 10^{78} атомам водорода, а возраст такого состояния Вселенной, в котором возможны биохимические реакции, составляет 10^{17} секунд; при этом время на создание или разрушение одной биохимической связи составляет в лучшем случае 10^{-2}-10^{-3} с. Цифры дают наглядное представление о необходимости поиска какого-либо иного механизма этой реакции, осуществляющегося с большей вероятностью. Сейчас намечены лишь общие подходы к созданию моделей таких механизмов.

Надежду на то, что они будут найдены дает знакомство с характерным поведением активных сред.В них могут возникать структуры, обладающие свойствами, аналогичные свойствам реальных и достаточно сложных объектов. В частности, из простых элементов, меняющих свое состояние в дискретные моменты времени по определенному закону в зависимости от того, в каком состоянии находился сам элемент и его ближайшее окружение в предыдущий момент времени, можно собрать среду, отражающую те или иные особенности физических или биологических (живых!) объектов. Это позволяет моделировать поведение упругих сред, явления гидродинамики, кинетики и популяционной биологии, деятельность человеческого мозга по переработке информации, заключающуюся, в частности, в узнавании образов, извлечении ассоциаций и др. Сети, сделанные из таких элементов, называются клеточными автоматами.

Примером клеточного автомата является известная игра «Жизнь», предложенная Джоном Конуэем в качестве математического развлечения. В клеточном автомате «Жизнь» правила таковы: каждый из элементов находится в состоянии покоя либо активности. Пассивный элемент переходит в активное состояние, если рядом с ним оказалось ровно три активных элемента; состояние активности сохраняется, если среди соседей есть два или три активных элемента. (Число соседей при этом равно восьми.)

Игра «Жизнь» демонстрирует разнообразное поведение в зависимости от начального состояния. Например, некоторые структуры исчезают, умирают, не выдержав “конкуренции”, некоторые достигают стационарности. Есть конструкции, которые движутся, тем самым напоминая бегущий импульс в активной среде. К ним относится так называемый “планер” (“парусник”). Он превращается в первоначальную фигуру через четыре этапа, смещаясь при этом на один элемент вниз и на один элемент вправо. Есть и более сложные конфигурации, например, “планерное ружье”. Оно представляет собой структуру, которая через 30 поколений элементов возвращается в исходное состояние и при этом испускает один “планер”; есть и «пожиратель планеров» — конструкция, которая поглощает их, не изменяя своей формы.

Сеть дискретных элементов, связанных между собой по определенным законам, может служить моделью искусственного интеллекта — в том смысле, что такая динамическая система может проявлять такие, например, свойства, как ассоциативная память, узнавание сложных образов и т. п.

Кто и как творит природу

В истории немало примеров, когда вопросы, относившиеся к чистой философии или религии, вдруг оказывались в поле зрения науки. Так, например, магнетизм — предмет изучения оккультных наук, считавшийся тайной, открытой лишь посвященным, — благодаря опытам Фарадея и работам Максвелла потерял свою мистическую окраску, и электричество вошло в нашу повседневную жизнь. Теперь мы не задумываясь пользуемся радио и телевидением, можем с колоссальной точностью рассчитать любые электромагнитные эффекты и ответить на вопрос, как будут себя вести электрические приборы в той или иной ситуации.

Пришла пора изучения тайн времени и жизни. Современные нелинейные модели динамических систем открывают нам природные механизмы творения, делают более понятными и привычными процессы, постоянно идущие в живой и неживой природе, даже дают рецепты поведения в сложном, противоречивом, хаотичном окружающем мире. Но найти исчерпывающий ответ на вопрос, вынесенный в заголовок раздела, сегодня не удается, да и вряд ли когда-нибудь его можно будет дать с позиции науки. Ведь и на вопросы “почему и зачем создана жизнь почему движущиеся заряды порождают магнитные явления” нет другого ответа, кроме «таков закон Природы». В этом смысле ничуть не хуже звучит «такова воля Божья». Позитивная же роль науки состоит в том, что вследствие объяснения механизмов проявления всеобщих принципов природы все более ясным становится их единый источник. А значит, есть надежда на то, что когда-нибудь человек узнает о собственном предназначении и найдет свое место в этой единой величественной картине мира.

Читать еще:

Белоухий турако.

Перья турако имеют яркий красный цвет благодаря пигменту, который не встретишь больше нигде в животном …

Добавить комментарий