Главная / Вокруг нас / интересный космос

интересный космос

1. Обнаружена нейтронная звезда светимостью в миллион Солнц

Астрономы заявили, что обнаружили нейтронную звезду, яркость которой в миллион раз превышает яркость Солнца.

Обильное свечение специалисты связывают с так называемым лимитом Эддингтона. В 2017 году в NASA уже были замечены сверхлучевые рентгеновские источники, хоть и тогда они превзошли мощность Солнца всего в десятки раз. Изначально учёные предположили, что это чёрные дыры и принадлежащие им квазары, но после немалого количества исследований выяснилось, что источником светимости является нейтронная звезда. Такие светила обладают большей плотностью, так как забирают вещество иных звёзд. Когда материал достигает при нагревании нужной температуры, он попросту светит рентгеновскими лучами. Объект обнаружен в галактике под условным названием M51, расстояние до которого 28 миллионов световых лет.

2. Почему мы до сих пор не врезались в другую вселенную

Вселенная, в которой мы живем, огромна, полна материи и энергии и расширяется все быстрее и быстрее. Взглянув за миллиарды световых лет, мы можем увидеть миллиарды лет нашего древнего прошлого, увидеть формирование планет, звезд и галактик. Мы заглянули так далеко, мы нашли облака газа, которые не дали жизнь ни одной звезде, и галактики, которые сформировались, когда наша Вселенная была на 97% моложе. Что особенно любопытно, мы можем наблюдать послесвечение Большого Взрыва, которое осталось с тех пор, когда Вселенной было каких-то 380 000 лет. Но при всем этом космическом великолепии мы никогда не находили свидетельств того, что наша Вселенная сталкивалась с другой вселенной в огромной множественной вселенной. Почему

В самом деле, если теория множественных вселенных верна, наша расширяющаяся вселенная должна была столкнуться с другой вселенной. Разве нет В конце концов, наша вселенная сейчас настолько большая, что некоторые описывают ее как бесконечную в своих размерах.

И так утверждает не только логика, но и известный авторитет Роджер Пенроуз. И Пенроуз, и расхожее мнение здесь ошибаются. Наша Вселенная является и должна быть изолирована и одинока в мультивселенной.

Хотя эта тема слишком популярна и противоречива, в пользу существования множественных вселенных говорят сильные физические гипотезы. Если совместить две наших ведущих школы мысли о том, как работает Вселенная, космическую инфляцию и квантовую физику, мы неизбежно придем к тому, что наша Вселенная находится в множественной вселенной. Есть и другое заключение: каждая отдельная Вселенная, которая создается — и каждый Большой Взрыв, который этому предшествует, — будет сразу же и навсегда отделена причинно-следственной связью от других. Почему Разберет физик Итан Зигель.

Космическая инфляция пришла как дополнение к теории Большого Взрыва, предоставив механизм, объясняющий, почему вселенная началась с определенных условий. В частности, инфляция дала ответ на вопросы о том…
•почему Вселенная была везде одной температуры;
•почему она была пространственно плоской;
•почему не осталось высокоэнергетических реликтов вроде магнитных монополей.

…при этом продолжая оставлять новые прогнозы, нуждающиеся в проверке. Эти прогнозы включают специфический спектр флуктуаций плотности, с которым рождалась Вселенная; максимальную температуру, достигнутую Вселенной на ранних стадиях Большого Взрыва; существование флуктуаций на масштабах, превышающих космический горизонт, и определенный спектр флуктуаций гравитационных волн. Все это, исключая последнее, с тех пор было подтверждено наблюдениями.

Космическая инфляция, если точно, это период до Большого Взрыва, когда во Вселенной преобладала энергия, присущая самому пространству. Сейчас величина темной энергии слишком мала, а во времена инфляции она была несоизмеримо выше: намного больше плотности энергии, когда Вселенная была полна материи и излучения в горячие первые этапы Большого Взрыва.

Поскольку расширение вселенной обусловлено энергией, присущей самому пространству, в период инфляции расширение было экспоненциальным, создавалось новое пространство. Если Вселенная удваивалась в размерах за время n, то через 10 периодов этого времени она была уже в 210 или даже в 21000 раз больше в размерах. За короткий промежуток времени любой неплоский и содержащий материю регион пространства становился неотличим от плоского, и все частицы материи раздувались так далеко друг от друга, что две частицы никогда уже не встретятся.

Впрочем, инфляция не может продолжаться вечно. Энергия, присущая пространству, не может оставаться вечно, иначе и Большого Взрыва бы не было, и Вселенная не родилась бы. Следовательно, энергия должна передаваться из ткани пространства веществу и излучению. Чтобы рассмотреть инфляцию как поле, представьте шар на вершине холма. Пока шар остается наверху, инфляция и экспоненциальное расширение продолжается. Но чтобы инфляция закончилась, какое бы квантовое поле за нее ни отвечало, ему нужно перекатиться из высокоэнергетического нестабильного состояния в низкоэнергетическое равновесное. Этот переход, «скатывание» шара с холма, приводит к концу инфляции и рождает Большой Взрыв.

Впрочем, есть одно но: то, что описано выше, работает как классическое поле, но инфляция должна была, как и все физические поля, быть квантовым по своей природе. Как и все квантовые поля, это описывается волновой функцией, и вероятность волны распространяется со временем. Если значение поля катится достаточно медленно вниз по холму, квантовое распространение волновой функции будет быстрее скатывания, что делает возможным — даже вероятным — наступление Большого Взрыва и конец инфляции.

Поскольку пространство расширяется с экспоненциальной скоростью во время инфляции, это означает, что с течением времени будет появляться экспоненциально большое число регионов пространства. Дело в том, что инфляции не будет заканчиваться везде в одночасье; разные регионы получат разные значения квантовых полей и разные направления. В некоторых регионах инфляция завершится, а поле скатится в долину. В других же инфляция будет продолжаться, давая жизнь новому пространству.

Отсюда рождается феномен вечной инфляции и идея множественных вселенных. Там, где заканчивается инфляция, мы получаем Большой Взрыв и Вселенную — часть которой мы можем наблюдать. Но вокруг регионов, в которых закончилась инфляция и произошел Большой Взрыв, будут также регионы, в которых инфляция не закончилась, и экспоненциальное расширение продолжается. В этих регионах рождается больше расширяющегося пространства, которое отодвигает области, в которых закончилась инфляция, быстрее, чем они способны расширяться. Каждый из новых регионов, в которых будет Большой Взрыв, будет причинно отделен от нашего региона, совсем и навсегда.

Если представить множественную вселенную как огромный океан, можно нарисовать отдельные вселенные, в которых произошел Большой Взрыв, как маленькие пузырьки в океане. Эти пузырьки, как и настоящие пузыри, рождающиеся на дне океана, будут расширяться с течением времени, как расширяется наша Вселенная. Но, в отличие от жидкой воды в океане, «океан» инфляционного пространства-времени расширяется быстрее, чем сами пузырьки когда-либо смогут расширяться. И поскольку пространство между ними растет и будет расти всегда, два пузырька никогда не соприкоснутся.

Было бы огромным сюрпризом, который случился бы вопреки прогнозам инфляционной и квантовой теории, если бы две Вселенных когда-либо столкнулись. Хотя столкновение таких пузырей оставило бы синяк на нашей Вселенной, который мы безотказно выявили бы на послесвечении Большого Взрыва, никаких свидетельств таких синяков нет. Как и предсказывали наши лучшие теории.

3. Ученые обнаружили странную физику выбросов сверхмассивных черных дыр

Сверхмассивные черные дыры, которые скрываются в сердце большинства галактик, часто описываются как «звери» или «монстры». Несмотря на это, они почти невидимы. Чтобы подтвердить их присутствие, астрономы измеряют скорость облаков газа, вращающихся вокруг этих регионов.

Порой эти объекты показывают свое присутствие благодаря созданию мощных струй, выбрасывающих столько энергии, что они способны затмить весь свет, излучаемый родительской галактикой. Известно, что релятивистские струи представляют собой два потока плазмы, движущиеся в противоположных направлениях с очень близкими к скорости света скоростями. Однако физика, управляющая этими космическими фонтанами, давно является загадкой. Новая статья, опубликованная в Nature Astronomy, проливает свет на причины их необычного внешнего вида.

Ученых поражает впечатляющая стабильность джетов: они выходят из области размером с горизонт событий (точки невозврата) сверхмассивной черной дыры и распространяются достаточно далеко, вырываясь из галактики и при этом сохраняя свою форму на длительное время. Длина струй в миллиард раз превышает их первоначальный радиус.

Однако, когда струи распространяются на большие расстояния, они делятся на протяженные структуры. Как объясняют в новой работе Константинос Гургулиатос и Сергей Комиссаров из Даремского и Лидского университетов (Великобритания), это указывает на то, что джеты подвергаются некоторой нестабильности, достаточно сильной, чтобы полностью изменить их внешний вид.

Дихотомия струй

Впервые джеты были обнаружены в 1918 году американским астрономом Хебером Кертисом, который заметил «любопытный прямой луч» в гигантской эллиптической галактике M87. В 1970-х годах астрономы из Кембриджского университета (Великобритания) Берни Фанарофф и Джулия Райли изучили большой набор струй. Они обнаружили, что их можно разделить на два класса: джеты, яркость которых с расстоянием уменьшается, и те, что по краям становятся ярче. В целом, второй тип примерно в 100 раз ярче первого. Эти виды несколько различаются на концах – первый похож на вспыхивающий шлейф, а второй напоминает тонкий турбулентный поток. Оба класса джетов являются областью активных исследований.

Когда материал ускоряется черной дырой, он достигает до 99,9% скорости света. Если объект движется так быстро, время внутри него замедляется. Иными словами, время в струе, измеряемое извне, течет медленнее, как и предсказывалось Специальной теорией относительности Эйнштейна. Из-за этого для эффективной защиты струи от разрушения требуется, чтобы различные части джета взаимодействовали друг с другом при удалении от источника.

Когда струя выбрасывается из черной дыры, она расширяется. Это расширение создает давление внутри потока, а давление газа, окружающего струю, не уменьшается. В конце концов, внешнее давление газа превышает внутреннее давление струи и сжимает поток. В этот момент части струи сближаются и взаимодействуют. Если некоторые части струи стали нестабильными, за счет взаимодействия нестабильность может распространиться на остальные части и воздействовать на весь пучок.

Процесс расширения и сжатия струй имеет еще одно важное следствие: поток длиннее при движении по искривленным траекториям. Изогнутые потоки, вероятно, пострадают от «центробежной нестабильности», что означает, что они начнут создавать вихревые структуры. До недавнего времени для джетов это не считалось критичным.

Действительно, новые подробные компьютерные моделирования показывают, что релятивистские струи дестабилизируются из-за центробежной неустойчивости, которая изначально влияет только на их взаимодействие с галактическим газом. Однако, если они сужаются из-за внешнего давления, эта нестабильность распространяется по всей струе, и она настолько катастрофична, что струя не выдерживает и уступает место тонкому турбулентному потоку.

Благодаря новому исследованию ученые лучше поняли впечатляющую стабильность астрофизических струй. Они также объяснили существование двух загадочных классов струй, обнаруженных Берни Фанароффом и Джулией Райли. Компьютерное моделирование того, как выглядят эти струи на основе понимания физики космических лучей, очень напоминает два класса, наблюдаемых астрономами. Оказалось, что все зависит от того, насколько далеко от галактики струя становится неустойчивой. Мало-помалу тайна космических монстров открывается, и получается, что сверхмассивные черные дыры совершенно законопослушны и предсказуемы.

Читать еще:

ИСЧЕЗНУВШИЕ НЕМЦЫ.

Депортация немецкого населения из стран Восточной Европы обошлась германскому народу в 2 миллиона жизней. После …

Добавить комментарий